天才数学者が二次方程式の簡単な解き方を考案!「推測も暗記も必要ない」
しかし、最近になって天才数学者ポーシェン・ロー氏によって二次方程式の簡単で新しい解き方が考案されました。数学界の歴史に刻まれるような大発見によって、私たちはややこしい二次方程式の解き方から解放されたのです。
研究論文の詳細は「arXiv」で公開されました。
A Simple Proof of the Quadratic Formula
https://arxiv.org/abs/1910.06709
また、二次方程式の簡単な解き方はポーシェン・ロー氏のwebサイトでも説明されています。
Quadratic Method: Detailed Explanation
https://www.poshenloh.com/quadraticdetail/
ポーシェン・ロー(Po-Shen Loh)氏はカーネギーメロン大学の数学教授。米国の国際数学オリンピックチームのナショナルコーチとしても活躍している天才数学者です。彼の技術は多岐にわたり、2018年には米国大統領早期キャリア賞で科学者としても表彰されたほどです。
ロー氏は「高度な概念をあらゆるレベルの人に教える」教育者として知られています。現在の数学に関して、多くの人にとって複雑で身近ではないと感じており、より簡単で理解しやすい数学を追い求めているとのこと。
今回の発見について、「世界の人にできるだけ共有したい」と述べています。
(中略)
■推測も暗記も必要ない二次方程式の新しい解き方
考案された新しい方法は推測する必要も、暗記する必要もありません。純粋に計算するだけでいいのです。順を追って考えていきましょう。
x2-10x+18=0
この二次方程式を新しい方法で解いてみましょう。
新しい方法はどんな数式でも強引に (x-?)(x-??)=0 の形にすることがポイントとなっています。
① x2-10x+18=0 を (x-?)(x-??)=0 にすると、
?+??=10 かつ
?×??=18 となります。
② ?+??=10に注目します。
次の考え方が新しい解き方の最も大切なポイントとなります。
?も??も検討がつかないので、通常であれば諦めてしまうところですが、?や??に仮の値を入れて考えてみます。
?+??=10に当てはまる数字はどんなものがあるでしょうか?例えば、
4+6=10
8+2=10
5+5=10
などです。
これらは、次のようにも表わせます。
(5-1)+(5+1)=10
(5+3)+(5-3)=10
(5+0)+(5-0)=10
です。
上記の数式を見てみると、?や??はそれぞれ「10を半分にした5」から「共通の数字」を足したり引いたりしたものだと分かります。
もちろん、「共通の数字」は分からないので、「 u 」と仮定します。
?+??=10 に「 u 」を当てはめると (5+u)+(5-u)=10 となり、
?=(5+u)
??=(5-u)
になりますね。
③ 次いで?×??=18に注目します。
先ほど仮定した?と??を当てはめると
(5+u)(5-u)=18
になります。
ここで、共通の数字である「 u 」を見つけたことの効果があらわれます。
計算すると、
25-u2=18
u²=7
u=±√7
となります。
仮に決めた共通の数字「 u 」の値が分かってしまいました!
④ uの値が明らかになったので、?、??の値も分かりますね。
?=(5+u) 、 ??=(5-u) だったので、
?,??=5±√7
となります。
これでx2-10x+18=0を強引に(x-?)(x-??)=0の形にすることができました。
x=?,?? なので、
x=5±√7 となります。
これで終了です。
続きはソースで
引用元: ・http://asahi.5ch.net/test/read.cgi/newsplus/1577625524/
続きを読む
Source: 不思議.NET
コメント